OPTIMIZING LARGE-SCALE ODE SIMULATIONS
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Abstract. We present a strategy to speed up Runge-Kutta-based ODE simulations of large
systems with nearest-neighbor coupling. We identify the cache/memory bandwidth as the crucial
performance bottleneck. To reduce the required bandwidth, we introduce a granularity in the sim-
ulation and identify the optimal cluster size in a performance study. This leads to a considerable
performance increase and transforms the algorithm from bandwidth bound to CPU bound. By
additionally employing SIMD instructions we are able to boost the efficiency even further. In the
end, a total performance increase of up to a factor three is observed when using cache optimization
and SIMD instructions compared to a standard implementation. All simulation codes are written in
C++ and made publicly available. By using the modern C++ libraries Boost.odeint and Boost.SIMD,
these optimizations can be implemented with minimal programming effort.
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1. Introduction. The numerical integration of ordinary differential equations
(ODEs) is a frequent and highly important task in all scientific areas. The efficient
implementation of ODE simulations therefore plays a crucial role in many scientific
applications as for example seen from the numerous scientific libraries devoted to
solving ODEs, e.g. [25, 12, 23, 3]. In recent years, the available computational power
has continued to grow tremendously, but the utilization of this power introduces new
challenges, especially in the field of numerical simulations where optimal performance
is often crucial. The most prominent example is GPGPU computing that has become
very popular in the past years, and for which the applicability of ODE simulations
was shown recently [19, 6, 7, 1]. Besides the highly parallelized GPUs containing
hundreds of cores, also normal CPUs now consist of many cores, and modern work-
stations include several CPUs. Hence it seems that nowadays performance gains are
best achieved by parallelization of the algorithms and thus utilizing all available cores.
But this is short-sighted. To reach optimal runtime one always should start tuning
the single-thread performance before considering parallelization and multi-threading.
This is a rather obvious fact, as an optimized single-thread performance is also ben-
eficial for possible later parallelization of the algorithm. However, current processors
are highly complex and although they can provide enormous computational power, it
has become increasingly difficult to utilize their full performance.

An often overlooked problem in numerical computing is memory bandwidth limi-
tation. In many cases programs are not bound by the available computational power
(CPU throughput), but rather by the fact that the CPU has to wait for the required
data to arrive from the main memory. Indeed, memory access typically has a latency
of the order of a hundred CPU cycles, which can introduce enormous performance
losses. Therefore, CPUs are equipped with several layers of caches: L1, L2 and in
modern processors also L3 cache. Those caches can pre-load the required data for the
CPU with the purpose of reducing latencies due to main memory access. However,
many algorithms are implemented in a way that makes efficient cache usage hard or
even impossible. In such situations, adjusting the algorithm to reduce the required
cache and/or memory bandwidth can greatly improve the performance. The impor-
tance of cache tuning is known since a long time [13, 15] and has become increasingly
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relevant as the computational power continued to grow faster than the memory band-
width [8]. Consequently, many modern numerical libraries address this problem and
include optimization techniques for enhancing cache performance [14, 11]. In the fol-
lowing, we will see that to reduce memory bandwidth, it can be even beneficial to
repeat parts of the computation instead of accessing previous results.

But even if the algorithm is cache friendly and limited by the CPU throughput,
there is room for improvement. Modern processors include SIMD extensions (Single
Instruction Multiple Data) that allow the parallel computation of two or four double-
precision operations in a single clock-cycle on a single core [22]. Although compilers
are capable of making use of SIMD instructions automatically, a process typically
called auto-vectorization, the specific use of SIMD instructions by the programmer
can give further significant performance gains as will be also demonstrated here.

In the following sections, we present a new technique to increase the performance
of large ODE simulations of one-dimensional chains with nearest-neighbor interac-
tions. The speed up is based on reducing the required cache bandwidth by introduc-
ing a granularity in the algorithm. By adjusting the granularity we will be able to
optimize the cache usage and thus increase the performance significantly. We will
then make use of SIMD instructions to further tune the efficiency and reach a speed
up of up to a factor of three compared to the standard implementation (cf. Fig. 7).

2. Optimizing Simulation Performance. We address the quite general sit-
uation of a high-dimensional ODE with nearest-neighbor interactions. The numeri-
cal approximation of the solution will be computed with the explicit Runge-Kutta-4
method [23]. This is the standard, general purpose routine and widely used due to
its robustness and simple implementation. However, the techniques presented below
can be applied also to any other explicit Runge-Kutta method.

2.1. Model with Nearest-Neighbor Coupling. Let us introduce a chain with
nearest neighbor interactions as follows: the state of the i-th element of the chain is
represented by r;(t), in general a D-dimensional vector. The chain has length N,
i.e. © = 1... N, hence in total the system is described by N - D scalar values. The
independent variable ¢ is usually representing the time in case of dynamical systems.
Most generally, an ODE with nearest-neighbor interactions can be written as:

(2.1) Py = f£i(ri, t) + gi(ri,ri1, i1, t),

where 1 denotes the derivative with respect to ¢ and we have omitted the explicit
time-dependence r(t). The function f; represents the local term and g;, the nearest-
neighbor coupling. Note that in this setup both the local and the coupling term can
be different for each site. In many cases, however, one faces homogeneous situations
where f and g are the same for all elements:

(22) I‘,L = f(I‘,“t) —&—g(ri,ri,l,riJrl,t).

Here, we will also assume such a homogeneous situation. Examples for such systems
include nonlinear oscillator chains [18, 4], nonlinear Klein-Gordon models [10], the
discrete nonlinear Schrédinger model [16] and classical spin chains [20]. Furthermore,
sometimes also discretized partial differential equations are solved by explicit schemes,
e.g. [27]. Nevertheless, the cache optimization technique presented below can be
generalized to heterogenic cases, but will not work with implicit routines.
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Fig. 1: Memory layout and data dependency of the ODE function evaluation

2.2. Runge-Kutta Schemes. To simulate such a system with nearest-neighbor
coupling, we first have to choose a memory layout for representing the state {r;}. To
avoid unnecessary cache misses, the best strategy is to place the data required at the
same time in the algorithm also close in memory. For a system with nearest-neighbor
coupling this is quite simple: the local function f needs all elements of a single state
r;, while the coupling g additionally requires the left and right neighbors. So the best
memory layout is very naturally to put all elements of {r;} consecutively one after
another. This is shown in Fig. 1 for an example with D = 3, i.e. r; = (x4, i, 2i)-
There, it is also illustrated how all data required to evaluate the rhs of the ODE for
one element k; (see Eq. (2.3) below) is found in a continuous memory block. Only at
the boundary there is potentially an access to the other end of the chain if periodic
boundary conditions are employed. However, in the case of large systems, which are
considered here, the boundary becomes negligible for the overall performance.

The implementation of an explicit Runge-Kutta scheme is rather simple. Starting
from some given initial condition {r;} for the time ¢ we will find an approximate
solution {T;} at t + At for some small step size At. The calculation consists of several
stages, where at each stage j first an evaluation of the rhs of the ODE is performed:

(23) kz = f(I‘i, t) + g(I’i, ri—1,r41,0+ CjAt).

Then, a new intermediate approximation is computed from the current, and possibly
previous, rhs evaluations:

J
(24) I'; =r; + Z ij,nAt k?

n=1

This intermediate approximation is then used in the next stage to compute another
rhs evalution {k/ 11 and so on. Fig. 2 schematically shows the flow of the algorithm.
After s stages the final result is obtained using the previously computed evaluations
of the rhs:

(2.5) F=T;+ Y bpAtk].

n=1

The number of stages s as well as the parameters a;, and c; are properties of the
Runge-Kutta scheme. The prominent Runge-Kutta-4 scheme for example has s = 4
stages, i.e. four evaluations of the rhs function in Eq. (2.3) per time step.
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Fig. 2: Schematic flow of a Runge-Kutta scheme.

Implementing this algorithm is rather straight-forward and several libraries exist
offering such functionality [25, 12, 23, 3]. However, all those implementations po-
tentially suffer from severe performance loss when dealing with large systems due to
memory bandwidth limitations. For example, evaluating the rhs of the ODE Eq. (2.3)
using double precision (8 Bytes per value) has a memory requirement of 2-N-D-8 Byte.
For optimal performance, this data should be available in the L1 or L2 cache of the
CPU, as those caches can be accessed by the CPU with low latency and extremely
high bandwidth. However, those caches have only limited size, typically less than a
few hundred Kilobytes. For large systems, i.e. N - D > 10°, the memory requirement
of the state {r;} and the rhs {k!} outrun the available L1/L2 cache and the CPU
has to employ the L3 cache, which has a larger latency and much lower bandwidth.
For very large systems, N - D > 107, eventually also the main memory has to be used
resulting in even more significant bandwidth limitations. That means, for large sys-
tems any iteration over {r;} or {kJ} is slowed down by cache latency and/or memory
bandwidth.

The Runge-Kutta scheme involves many such iterations. For each stage, the rhs
evaluation Eq. (2.3) as well as the computation of the intermediate approximation
Eq. (2.4) involves an iteration over all N elements, hence a total of 2s such itera-
tions. This can lead to a severe performance loss as shown in Fig. 5a. There, we
use N =220 2~ 10% and D = 3 which means one state {r;} occupies 24 Megabytes,
much more than the available L1/L2 cache size. And indeed, we observe a significant
activity for the L3 cache (bottom panel in Fig. 5a) for the standard implementation,
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Fig. 3: Error propagation in the Runge-Kutta scheme.

which results in a sub-optimal performance. More details on the performance mea-
surements follow below. First, we will provide an approach to circumvent this problem
by introducing granularity to the algorithm.

2.3. Introducing Granularity. As described above, every iteration across all
N elements can lead to performance loss if the state becomes too large. The solution
is rather simple: divide the state into clusters such that each cluster fits into L1/L2
and do a whole Runge-Kutta step on each cluster in turn. Instead of 2s iterations for
each Runge-Kutta step this would involve only a single iteration and therefore reduce
the required L3/memory bandwidth by a factor of 2s. For an uncoupled system, i.e.
g = 0, this is trivial as all systems are independent from each other and thus can
be treated separately. In the presence of coupling, however, the situation is more
complicated. Suppose we divide the state into C' clusters, each having G elements,
i.e. N =C-G. The cluster size G is also called granularity. Now we want to perform
one Runge-Kutta step for a single cluster that starts at index ¢ and ends at g — 1:
(rg,...,rg—1), where § = g + G + 1 is the start index of the next cluster. Hence,
we have to compute the function values (k},...,k} ;) in Eq. (2.3). But in general
(arbitrary coupling), for this computation we need all values {r;}, not only those from
the cluster g due to the coupling terms.

For nearest-neighbor coupling, the situation is much better. Here, we are only
missing the values ry_; and rj to compute the values at the left and right boundary of
the cluster: k; and k}kl. So we simply append those values to the left and right end
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of the cluster. Although we are only interested in the result (Fg,...,T5-1), we perform
the Runge-Kutta step on the extended cluster (Fy4_1,...,T5). However, this only fixes
the first stage of the Runge-Kutta step. That means we obtain a correct intermediate
approximation for (ry,...,r;_;), while the boundary values of the extended cluster
r;71 and r}] are now wrong as for those again the required coupling terms are not
available. But for the next stage we need exactly those boundary values. Therefore,
we extend the cluster even further and add two neighbors on the left and right, which
then gives correct results for two stages of the Runge-Kutta scheme. For each stage of
the algorithm the error introduced by the missing coupling term at the edges advances
one index into the cluster, as sketched in Fig. 3. So finally, for a Runge-Kutta scheme
with s stages we have to extend the original cluster by s left and right neighbors
to ensure the correct computation of the cluster, as depicted in Fig. 3. In the end,
we have the correct result for the cluster (rj,...,r;_ ), while the extra values on
the left and right are wrong and will be neglected. Those values belong to the left
(right) neighboring clusters and their correct computation will be performed typically
before (after) the current cluster. Consequently, we add an overlap computation of 2s
values per cluster, which means an increase of the required computations by a factor
of 14 2s/G. But we can hope that this increase of computations is out-weighted by
the reduced cache/memory access of the algorithm.

And indeed, for an optimal choice of the granularity G, the cache optimization
described above leads to a performance increase of roughly a factor of two, as shown
examplarily in Fig. 5a (“Cache optimized” vs “Standard”). Some estimate for the
optimal granularity can be deduced from the L1/L2 cache size. However, there is a
trade-off between cache usage and the amount of overlap computation and thus we
employ performance study where different granularity values are compared, as shown
in Fig. 5b. Again, details on the performance results will follow below.

2.4. SIMD Instructions. Asseen in Fig. 5a, we can reach about 4200 Megaflops/s,
that is 1.2 Flops/cycle on a 3.8 GHz Intel Xeon processor with the cache optimized
implementation. This is quite impressive, as typically the floating point unit of the
CPU saturates at 1 Flop/cycle. Hence, we were able to turn the memory bandwidth
bound implementation into a CPU bound version by introducing granularity. The
extra performance comes from the SIMD (Single Instruction Multiple Data) units in
the CPU, that can perform up to four floating point operations per cycle. Modern
compilers can utilize those extra SIMD registers automatically (auto-vectorization).
However, by explicitly using SIMD registers in the program one can hope to reach an
even higher performance than by relying on auto-vectorization.

For that we first have to adjust the memory layout of the implementation. To
make optimal use of the SIMD registers, we will organize the data in packs of size
P = 4! To allow for optimal utilization of the SIMD units, we have to ensure
that for all elements of an SIMD pack the same operations are performed, and that
the operation of one entry in the pack does not depend on any other entry of the
same pack. Only then can the code be fully vectorized with significant performance
gains. Again assume we have a chain of three-dimensional systems (D = 3), i.e.

r; = (x;,¥:,2i), and a chain length of N: ¢ = 1,...,N. To make sure the same
operations are performed on all entries of a pack we should only put either z, vy,
or z values in a pack, e.g. {z1,%2,23,24}, {y1,...,y4} and so on. But with this

IWe use a pack size of four as the target processor supports the AVX extensions with 256 Bit
registers capable of holding four values (double precision). Older CPUs might only support SSE with
128 Bit registers, where a pack size of two should be used.
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Fig. 4: Memory layout of a chain of 3D systems organized in SIMD packs. Each pack
contains P = 4 values of the same type (x, y or z coordinate of a single system)
taken from distant points in the chain (see text). Note how the evaluation of the rhs
function for one value in a SIMD pack does not depend on other values of that SIMD
pack.

organization, the computation of the rhs of the ODE in Eq. (2.3) would introduce
coupling between the entries of the pack. To avoid that, we divide the chain in P =4
pieces of length N’ = N/P and represent each piece by one entry of the SIMD packs.
Solet p=1,p' = N'+1, p” =2N’'+1 and p”/ = 3N’ +1 be the starting indices of the
four parts of the chain. Then the first SIMD pack will contain {z,, z,, T, Ty}, the
second one {Yp, Yp, Yp, Yprr } and so on. This memory layout is sketched in Fig. 4.
Compared to the original memory layout in Fig. 1, we replace the single values, e.g.
x1, by four values from distant points of the chain (zp pr pr ).

Using such a memory layout, it is now possible to compute four values at once
by virtue of SIMD. In principle this could give a performance gain of a factor four in
the best case. However, note that this relies on the fact that the dynamical equations
f + g are indeed independent of the chain index, as the above usage of SIMD registers
requires that the same operations are performed for each entry of the SIMD pack and
hence in the above description also for each element in the chain. Note also that at
the edges of the four parts of the chain there is coupling between different entries of
the SIMD pack. For example the second chain is stored in the second SIMD entries,
but the left neighbor of its first element is the last element of the first chain and hence
stored in the first entries of the SIMD packs. So the edges need special treatment and
their calculation can not be carried out using the SIMD vectorization. But again for
long chains this has negligible performance impact. Finally, the cache optimization
described above can be similarly applied to this memory layout as well. It works
exactly in the same way, only that one now deals with SIMD packs instead of scalar
values, but in return one has a reduced chain length of N’ = N/P.

Fig. 5a shows the performance comparison of the standard implementation, the
optimized cache version and SIMD version. As seen there, using SIMD instructions
gives another performance boost of about 50% compared to the cache optimized
version, which means a total speed up of a factor of three compared to the standard
implementation in this simulation. Details of these performance tests are described
below.



3. Performance Study. In the following, we will compare the performance of
the different approaches presented above. The examplary system is a chain of Roessler
oscillators [24] with nearest-neighbor coupling.

3.1. Coupled Roessler Chain. A single Roessler oscillator has a three-dimensional
(D = 3) state r; = (z, yi, %) following the dynamics:

—Yi — %
b+ zi(x; —¢)

The parameters a, b, ¢ are constant and fixed to some typical values: a = 0.2, b = 1,
¢ = 9. For those parameter values, the dynamics of the Roessler system is generally
chaotic due to the existence of a strange attractor [21]. We add dispersive nearest-
neighbor coupling in the first coordinate by defining:

Ti1 — 2% + Tipa
(3.2) g(ri,ri—1,Ti1) = 0
0

At the boundaries, we set ro = ry and ry41 = r1, i.e. periodic boundary conditions.
Substituting f and g in Eq. (2.2) defines our chain of coupled Roessler oscillators that
will be used for performance investigations below.

3.2. Performance Results. We simulate a chain of N = 220 ~ 105 coupled
Roessler oscillators. As mentioned above, we use the well-known and popular Runge-
Kutta-4 algorithm with s = 4 stages for the numerical time evolution. We start from
random initial conditions and perform T = 50 steps with a step-size of At = 0.01.
We measure the runtime tywa needed to perform those T steps and then quantify the
performance in terms of Runge-Kutta steps per second:

(33) Perf = T/tWall-

This is repeated for M = 10 times and we use the minimal runtime (maximal perfor-
mance) of those 10 trials. Additionally, we measure the CPU throughput in terms of
Flops/s (FLoating point OPerations per second) as well as the cache transfer band-
width using the 1ikwid framwork [26], which is based on the processor’s performance
counters.

3.2.1. Results on Intel Xeon. In a first run, the simulations are performed on
an Intel Xeon E5 processor with 3.8 GHz (single core, turbo mode). The simulations
are implemented in C++ and compiled with the Intel Compiler version 15.0. The
Intel Xeon processor has 32KB/256KB/20MB of L1/L2/L3 cache respectively. The
representation of one state {r;} requires N - D - 8 Byte = 24 Megabytes, clearly above
the L1/L2 cache capacity, but also bigger than the available L3 cache. Therefore,
we expect the standard implementation, where 2s = 8 iteration over the state are
performed in each Runge-Kutta step, to suffer severely from bandwidth limitations.
This is seen in Fig. ba, where the top bar in all three panels represents this stan-
dard implementation. We find a CPU throughput of roughly 2000 MFlops/s, which
is significantly below the 3800 MFlops/s the FPU unit of this CPU is capable of.
Accordingly, the L3 cache bandwidth of about 17 GByte/s clearly indicates signifi-
cant L3 usage. Hence, the performance remains at below 30 Runge-Kutta steps per
second.
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Fig. 5: Performance of a simulation of N = 22° ~ 10° (24 Megabytes) coupled Roessler
systems on an Intel Xeon 3.8 GHz. Left panel shows the performance of the three
different versions: Standard implementation, cache optimized version and cache op-
timized + SIMD (both at optimal granularity). In the right panel the granularity
dependence of the cache optimized version without (circles) and with (squares) addi-
tional SIMD usage is shown. The filled symbols represent the optimal value (highest
performance).

Next, we analyze the performance of the cache optimized implementations in-
troducing granularity and overlap computations as described above. Therefore, in a
first step we identify the optimal granularity G by means of a performance study for
different values G. The result is shown in Fig. 5b (circles), where we plot the perfor-
mance (top panel), the CPU throughput (center panel) and the L2 cache bandwidth
(bottom panel) for increasing granularity. The granularity is measured in Bytes via
D - G - 8Bytes to allow for comparison with the cache size. The analyzed range for
G spawns from values significantly smaller than the L1 cache size (G =~ 1KB) to
about the L2 cache size (G ~ 1 MByte). We find that the CPU throughput (center
panel) is rather independent of the granularity and stays at about 4 GFlops/s. The
performance (top panel) however increases with increasing granularity because due to
the larger sizes of the clusters (larger granularity), less overlap computation are per-
formed and less Flops/s are wasted for neglected results. The L2 bandwidth starts to
increase at a granularity size of about 16 KByte, which is consistent with the L1 cache
size of 32 KByte as for example a rhs computation needs to store the state as well
as the result. However, the L2 cache access does not have a severe influence on the
performance as it is typically fast enough to supply the FPU with the required data.
Nevertheless, we identify the optimal granularity at 48 KBytes, which corresponds to
a length of each cluster of G = 512 elements. Fig. 5a then shows the performance
results for this optimal value of the granularity (“Cache optimized”). And indeed,
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we find a performance improvement as well as a CPU throughput improvement of a
factor of two, while the L3 bandwidth drops by a factor of eight, as expected as now
only one iteration over all clusters needs to be performed instead of 2s = 8 before.

Finally, we additionally employ the SIMD instructions as explained above. Again
we identify the optimal granularity in a similar fashion as before. The results are
shown as squares in Fig. 5b. With SIMD instructions, the performance is more
sensitive to the granularity than before and we find an optimal value of 24 KByte,
which corresponds to an optimal cluster length of G = 64 elements?. Note, that with
SIMD instructions, the L2 access does lead to a drop in the CPU throughput, as now
potentially four times as much data is required per CPU cycle. However, the optimal
performance (top panel in Fig. 5b) does not correspond to the best CPU throughput
(second panel) due to the overlap computations that contribute to the throughput
but not to the real performance.

Fig. 5a shows the performance, CPU throughput and cache bandwidths for the
SIMD version at optimal granularity (“Cache optimized + SIMD”). We observe a
speed up of about 50% over the plain cache optimized version and a factor three over
the standard implementation. The gain in CPU throughput is significantly higher,
which can be partially explained by the fact that in this case more overlap computa-
tions have to be performed (12.5% at G = 64 vs ~ 1% at G = 512). However, note
that the performance counters used to measure the CPU throughput are not com-
pletely reliable. Hence, one should always measure the actual runtime of an algorithm
to obtain real performance results. Finally, note that the maximal CPU throughput
of about 10 GFlops/s shown in Fig. 5a means about 2.6 Flops/cycle on the 3.8 GHz
CPU. This is quite impressive, but there is still room for improvements as the SIMD
registers can generally do up to 4 Flops/cycle, or even more for specific sequences
of additions/multiplications. However, this would involve hand-tuned code which is
beyond the scope of this article.

3.2.2. Results on AMD Opteron. We repeated the same tests on an AMD
Opteron 6272 with 2.1 GHz and L1/L2/L3 cache sizes of 48KB/1MB/8MB [5], where
we used clang-3.4 to compile the C++ implementations.®> Fig. 5a shows the perfor-
mance results for the three different implementations. Again, the standard implemen-
tation suffers greatly from bandwidth limitations with a rather poor performance of
only 10 steps per second. Introducing granularity again greatly improves the perfor-
mance by reducing the required L3 cache bandwidth. Fig. 6b shows the granularity
dependence of the performance for the AMD processor. For the non-SIMD version
we find similar results as for the Intel Xeon before, with a performance increase for
increasing granularity at a rather constant rate of CPU throughput of about 2000
MFlops/s corresponding to roughly 1 Flop/cycle. Hence again we are able to turn
the algorithm from cache bandwidth bound to Flops bound by introducing granular-
ity. Additional utilization of SIMD instructions leads to further performance gains
of about 40%. The maximal CPU throughput of about 3000 MFlop/s corresponds
to roughly 1.4 Flops/cycle, clearly below the 4 Flops/cycle that is possible with this
processor’s AVX extensions. As for the Intel Xeon, this indicates that the simulation
does not yet make full use of the available SIMD registers Again, it might be that
with further hand-tuning of SIMD instructions additional performance gains can be
reached, but this is beyond the scope of this article.

2Remember that each element of the chain in the SIMD case consists of a pack of four values.
3Test with the g++-4.9 compiler showed similar, but slightly lower (~ 10%) performance results.
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Fig. 6: Performance results for the same simulation as in Fig. 5 on an AMD Opteron
2.1 GHz.

Nevertheless, we identified the optimal granularity and found a speed up of a
factor of three compared to the standard implementation. The overall speed up is
similar to the Intel Xeon, with similar contributions from cache optimization and
SIMD usage. However, the final performance of the Intel Xeon is about another
three times better than for the AMD Opteron. This is partly due to the higher clock
speed of 3.8 GHz vs only 2.1 GHz for the Opteron, but also because of the better
SIMD utilization for the Intel Xeon. Indeed, the AMD Opteron only reaches about
1.4 Flops/cycle, roughly half of what was observed for the Intel Xeon above. Note
however, that these results should not be taken as a comparison of the two processors,
as they have very different properties, e.g. 16 cores in the AMD Opteron vs eight cores
in the Intel Xeon.

3.2.3. Dependence on System Size. Finally, we measured the speed up due
to cache optimization and SIMD instructions for different chain lengths N = 219 ... 226,
The result is shown in Fig. 7 for both the Intel Xeon (upper panel) and the AMD
Opteron (lower panel). The darker regions correspond to the performance gain from
cache optimization, while the lighter regions indicate the additional gain from SIMD
instructions. The system size is given in Bytes required to store one instance of the
state {r;} by computing N - D - 8 Bytes. Note that the optimal granularity was ob-
served to be independent of the system size (results not presented), as one expects
because it only depends on the available L1/L2 cache size.

For both processors, using the SIMD instructions gives a constant gain indepen-
dent on system size. For the Intel Xeon, the influence of cache optimization has a
clear increase when the systems get larger than 2 MBytes. This can be explained by
the L3 cache size. To perform a whole Runge-Kutta-4 step, the algorithm needs to
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Fig. 7: Speedup gained from cache optimization and SIMD usage compared to stan-
dard implementations in dependence of the problem size. The graph shows the per-
formance gain in terms of total run-time of simulating a chain with nearest-neighbor
couplings of different size on a Intel Xeon (3.8 GHz, top panel) and AMD Opteron (2.1
GHz, bottom panel). The graphs show the speedup over a standard implementation
gained from granularity optimization (dark gray) and additional SIMD instructions

(light gray).

store the state {r;}, an intermediate state {r}} and s rhs evaluations {k}. This gives
a total memory requirement of s + 2 = 6 states. That means for the Intel Xeon with
20 MBytes L3 cache, for system sizes larger than about 3 MBytes the L3 chache is
not sufficient to contain all required data and the even slower main memory has to be
used. This leads to a further performance decrease of the standard implementation
and hence bigger speed up from the cache optimizations. For the AMD Opteron with
an L3 cache size of 8 MBytes, the transition to main memory should happen at system
sizes of about 1 MByte, which is also consistent with Fig. 7. Furthermore, there we
observe another increase of the speed up at system sizes reaching about 2 GBytes.
This is probably due to the fact that the main memory of this machine is divided into
NuMA domains (Nonuniform Memory Access). So for very large systems, the single-
core simulation requires memory outside of its NuMA domain, which induces further
bandwidth limitations and hence even bigger speed up due to cache optimization.

4. Implementation. All simulations were implemented in C++ and the sources
are made publicly available [17]. For the numerical Runge-Kutta-4 algorithm the
Boost.odeint library was used [3, 2]. It provides modern, generic implementations
of ODE solvers and greatly simplified the implementation of the cache optimized al-
gorithm. For example, Boost.odeint performs the required memory allocations for
the temporary results of the RK4 steps and also supports an easy way to introduce
granularity with the help of a range interface. To efficiently employ the SIMD reg-
isters, NT?’s SIMD library [9] (proposed Boost.SIMD) was used. It provides a C++
abstraction to the low-level SIMD registers and allows for a very fast and easy porting
of the simulation to SIMD. By using this library, the source code is generic in the
sense that it will be decided at compile-time, and not in the source code, which SIMD
extensions are going to be employed (e.g. SSE3, SSE4 or AVX). Furthermore, the
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generic implementation of Boost.odeint allowed us to readily use SIMD data types,
and therefore SIMD registers, without the need to re-implement the Runge-Kutta-4
algorithm with SIMD instructions.

For more details of the implementations we refer to the source codes [17]. We only
emphasize here that the introduction of granularity as well as the SIMD usage can be
done with reasonable programming effort when using Boost.odeint and Boost.SIMD.
For example, the simulation of the coupled Roessler system with granularity and
SIMD instructions requires merely about 220 lines of C++ code, only about 100 lines
more than a basic standard implementation with Boost.odeint. Hence, applying the
techniques presented here in ODE simulations with C++ is certainly achievable in
most situations.

5. Conclusions and Outlook. In this article, we have presented a technique
to improve the performance of large-scale ODE simulations with nearest-neighbor
coupling based on explicit Runge-Kutta schemes. The main performance bottleneck
for such simulations is the cache and memory bandwidth which prevents the full
employment of CPU throughput due to the lack of data available to the CPU. We
are able to overcome this problem by introducing a granularity to the algorithm
which leads to a more cache efficient implementation. To ensure the correctness of
the algorithm, we introduced overlap computations, which effectively increased the
required computational effort. However, performance tests on two processors, an Intel
Xeon and an AMD Opteron, showed that for optimal granularity, this is clearly out-
weighted by the better cache utilization. With this improvement, we again arrived at
an implementation that is bound by the CPU throughput instead of cache/memory
bandwidth. We were then able to further increase the performance by employing
SIMD instructions. For both processors we found a total performance increase of up
to a factor of three, depending on the system size (cf. Fig. 7). We conclude that
for large-scale simulations, the techniques presented here should be considered as a
valuable option to increase simulation performance, typically even before exploring
multi-core parallelization.

Note that from Figures 5b and 6b one finds that the optimal granularity roughly
corresponds to the L1 cache sizes of the used processor. Hence, it is possible to
automatically choose the optimal granularity without employing a performance study
by adjusting the granularity to the L1 cache size of the target machine.

However, the cache optimizations are only promising if the program indeed suffers
from memory/cache bandwidth limitations. In cases, for example, where the rhs of
the ODE involves more complicated expressions that require several CPU cycles to be
computed, the cache/memory bandwidths might not impose a bottleneck and hence
introducing granularity would not lead to any performance gain. In such situations,
one should directly try to utilize SIMD instructions to increase the CPU throughput
and obtain better performance this way.

To ensure the correct computation in cases with granularity we introduced overlap
computations. The presented strategy only works for nearest-neighbor coupling. In
general, however, the same idea could also be applied in more complicated situations.
In case of next-nearest-neighbor couplings, for example, simply twice as long overlaps
have to be introduced, and similarly with longer coupling ranges. In principle, also
for situations with distant, but sparse couplings granularity can be implemented. But
this is more complicated as one has to keep exact track of the error propagation in
the Runge-Kutta scheme. Furthermore, if the coupling is not sparse enough, the gain
from cache optimization might not outweight the additional overlap computations
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anymore. Nevertheless, with a factor three speed up, the cache optimization tech-
niques presented here proved to be highly valuable for nearest-neighbor coupling and
can potentially be generalized to more complex situations as well.
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