
Solving Ordinary Differential Equations on
GPUs

Karsten Ahnert, Denis Demidov and Mario Mulansky

Abstract Ordinary Differential Equations (ODEs) are a fundamental mathematical
tool to model physical, biological or chemical systems, and they are widely used
in engineering, economics and social sciences. Given their vast appearance, it is of
crucial importance to develop efficient numerical routines for solving ODEs that
employ the computational power of modern GPUs. Here, we present a high-level
approach to compute numerical solutions of ODEs by developing a generic imple-
mentation of the most common algorithms and combining this with modern C++
libraries like VexCL and Thrust. Our approach is based on generic programming
and results in highly scalable and easy-to-use source code.

1 Introduction

One of the most common problems encountered in Physics, Chemistry, Biology, but
also Engineering or Social Sciences, is to find the solution of an initial value prob-
lem (IVP) of an ordinary differential equation (ODE). In fact, many physical laws
are written in terms of ODEs, for example the whole classical mechanics, but ODEs
also emerge from discretization of partial differential equations (PDEs) or in models

Karsten Ahnert
Ambrosys GmbH, Albert-Einstein-Str. 1-5, 14469 Potsdam, Germany,
e-mail: karsten.ahnert@gmx.de

Denis Demidov
Kazan Branch of Joint Supercomputer Center, Russian Academy of Sciences, Lobachevsky st.
2/31, 420011 Kazan, Russia,
e-mail: dennis.demidov@gmail.com

Mario Mulansky
Max-Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden,
TU-Dresden, Institute for Theoretical Physics, Zellescher Weg 17, 01069 Dresden
e-mail: mulansky@pks.mpg.de

1

karsten.ahnert@gmx.de
dennis.demidov@gmail.com
mulansky@pks.mpg.de

2 Karsten Ahnert, Denis Demidov and Mario Mulansky

of granular systems or when studying networks of interacting neurons. In the most
cases one faces ODEs that are too complicated to be solved with analytic methods
and one has to rely on numerical techniques to find at least an approximate solu-
tion. Of course, there exists a wide range of numerical algorithms to find such solu-
tions of IVPs of ODEs. An introduction to both the mathematical background and
the numerical implementation can be found in the textbooks from Hairer, Nørsett
and Wanner [?, ?]. The standard work for numerical programming, the “Numerical
Recipes” [?] also contains detailed sections on solving ODEs. There are also several
special classes of ODEs that require specific numerical methods, e.g. the Hamilto-
nian systems in physics which are typically solved using symplectic routines [?].

Obviously, there is a variety of numerical tools and libraries dedicated to solv-
ing ODEs. All mathematical software packages, like Matlab, Maple, Mathemat-
ica, or even R [?, ?] contain routines for integrating ODEs. However, the focus
here lies on the direct implementation of ODE simulations. For this task, one also
finds a vast selection of numerical libraries, typically with Fortran or C/C++ bind-
ings. Most prominent are probably the codes shipped with the “Numerical Recipes”
book [?] containing several sophisticated explicit and implicit routines. The GNU
scientific library (GSL) also provides ODE functionality [?], and finally the SUNDI-
ALS suite [?] offers a modern implementation of all important algorithms. Unfortu-
nately, none of those libraries supports GPU devices. However, there exists a highly
flexible C++ library dedicated to ODEs: Boost.odeint1, which is designed in such a
generic way that the algorithms are implemented completely independent from the
computational backend. Thus, by providing a computational backend that employs
GPUs one immediately gets a GPU implementation of the ODE solver. Boost.odeint
already includes several backends for GPU computations: for the NVIDIA CUDA-
framework based on the Thrust2 library or the CUDA MTL4 3 [?] and for the
OpenCL-framework based on VexCL4, ViennaCL 5, or Boost.Compute6. In this
text we will show how to implement ODE algorithms in such a generic way that
separates the computational backend and thus greatly simplifies the portability to
GPUs. Furthermore, we present two such backends, based on CUDA and OpenCL
and develop several example simulations using these ODE codes. However, the
most difficult part when writing an ODE simulation is the implementation of the
right-hand-side (RHS) of the ODE, as it will be explained later. Hence, although
Boost.odeint provides all the functionality to find a numerical solution of a given
ODE, implementing the RHS of an ODE remains a non-trivial task.

The examples presented later will use modern C++ techniques and thus require
the reader to be familiar with several advanced C++ concepts, e.g. we will make
heavy use of templates to write generic code. Moreover, knowledge of the C++-

1 http://www.odeint.com
2 http://thrust.github.com
3 http://www.simunova.com/gpu_mtl4
4 https://github.com/ddemidov/vexcl
5 http://viennacl.sourceforge.net/
6 https://github.com/kylelutz/compute

http://www.odeint.com
http://thrust.github.com
http://www.simunova.com/gpu_mtl4
https://github.com/ddemidov/vexcl
http://viennacl.sourceforge.net/
https://github.com/kylelutz/compute

Solving Ordinary Differential Equations on GPUs 3

Standard Library is also useful, specifically containers, iterators and algorithms. For
the ODE algorithms implementation we make use of the C++03 standard only, but
in some of the examples we employ the new C++11 and even C++14 abilities.

In the following sections we will give a short introduction to ODEs and the ba-
sic numerical schemes for finding approximate solutions (section 2), followed by a
description of the generic implementation of those algorithms in section 3. Then in
section 4 we will specifically describe how to use the various GPU backends and
how they are implemented. The Boost.odeint library is introduced in section 5 and
section 6 contains several examples on how to efficiently implement the RHS of
different ODE problems together with discussion of performance implications of
possible implementations. Finally, section 7 contains a short summary and conclu-
sions.

2 Numerical Schemes

Before describing the generic implementation of ODE solvers and how to adapt
them for GPU usage we will give a short introduction to ODEs and some mathe-
matical background about the numerical schemes. This is mainly to familiarize the
reader with our notation; for a more detailed description of the mathematics behind
ODE integration we refer to standard textbooks, e.g. [?, ?].

2.1 Ordinary Differential Equations

Generally, an ODE is an equation containing a function x(t) of an independent vari-
able t and its derivatives x′, x′′, . . . :

F(x,x′,x′′, . . . ,x(n), t) = 0. (1)

This is the most general form, including implicit ODEs. However, we will here only
consider explicit ODEs, which are of the form x(n) = f (x,x′,x′′, . . . ,x(n−1)) and are
much simpler to be addressed numerically. The highest derivative n that appears in
the ODE is called the order of the ODE. But any ODE of order n can be easily
transformed into an n-dimensional ODE of first order. Therefore, it is sufficient to
consider only first order differential equations where n = 1. The numerical routines
presented later will all deal with initial value problems (IVP) where additionally to
the ODE one has also given the value for x at a starting point x(t = t0) = x0. Thus,
the mathematical formulation of the problem that will be numerically addressed
throughout the following pages is:

4 Karsten Ahnert, Denis Demidov and Mario Mulansky

d
dt

x(t) = f(x(t), t), x(t = t0) = x0. (2)

Here, we use bold face x to indicate a possible vector character. Typically, the ODE
is defined for real-valued variables, i.e. x ∈ RN , but it is also possible to consider
complex valued ODEs where x ∈ CN . The function f(x, t) is called the right-hand-
side (RHS) of the ODE. The most simple physical example for an ODE is probably
the harmonic oscillator, e.g. a point mass connected to a spring. Newton’s equation
of motion for such a system is:

d2

dt2 q(t) =−ω
2
0 q(t), (3)

where q(t) denotes the position of the mass and ω0 is the oscillation frequency,
a function of the mass m and the stiffness of the spring k: ω0 =

√
k/m. This can

be brought into form (2) by introducing p = dq/dt, using x = (q, p)T and defining
some initial conditions, e.g. q(0) = q0, p(0) = 0. Using the short-hand ẋ = dx/dt
and omitting explicit time dependencies we get:

ẋ = f(x) =
(

p
−ω2

0 q

)
, x(0) =

(
q0
0

)
. (4)

Note, that f in Eq. (4) does not depend on the variable t, which makes Eq. (4) an
autonomous ODE. Also note that in this example the independent variable t denotes
the time and x a point in phase spaces, hence the solution x(t) is the trajectory of
the harmonic oscillator. This is a typical situation in physical ODEs and the reason
behind our choice of variables t and x.7

For the harmonic oscillator in Eq. (4), one can easily find an analytic solution
of the IVP: q(t) = q0 cosω0t and p(t) = −q0ω0 sin(ω0t). For more complicated,
non-linear ODEs it is often impossible to find an analytic solution and one has to
employ numerical methods to at least find an approximate solution. One specific
example are systems exhibiting chaotic dynamics [?], where the trajectories can not
be described in terms of analytic functions. One of the first models where this has
been explored is the so-called Lorenz-system [?], a three-dimensional ODE given
by the following equations for x = (x1,x2,x3)

T ∈ R3:

ẋ1 = σ(x2− x1)

ẋ2 = Rx1− x2− x1x3

ẋ3 = x1x2−bx3,

(5)

where σ , R, b ∈ R are parameters of the system. Although the solution might be
impossible to find analytically, there are mathematical proofs about its existence

7 In Mathematics, the independent variable is often called x and the function is y(x).

Solving Ordinary Differential Equations on GPUs 5

and uniqueness under some conditions on the RHS f, e.g. the Picard-Lindelöf the-
orem which requires f to be Lipschitz continuous [?]. Provided that this condition
is fulfilled and a unique solution does exist, as it is the case for almost all practical
problems, one can apply a numerical algorithm to find an approximate solution.

2.2 Runge-Kutta Schemes

The most common general-purpose schemes for solving initial value problems of
ordinary differential equations are the so-called Runge-Kutta (RK) methods [?]. We
will focus on the explicit RK-schemes as those are easier to implement and well-
suited for GPUs. They are a family of iterative one-step methods that rely on a
temporal discretization to compute an approximate solution of the IVP. Temporal
discretization means that the approximate solution is computed at time points tn.
So we use xn for the numerical approximation of the solution x(tn) at time tn. In
the simplest, but most frequently used case of an equidistant discretization with a
constant step size ∆ t, one writes for the numerical solution:

xn ≈ x(tn), with tn = t0 +n ·∆ t. (6)

The approximate points xn are obtained sequentially using a numerical algorithm
that can in the most general form be written as:

xn+1 = F∆ t(xn). (7)

The mapping F∆ t here represents the numerical algorithm, i.e. the Runge-Kutta
scheme, that performs one iteration from xn to xn+1 with the time step ∆ t. The
numerical scheme is said to have the order m if the solution it generates is exact up
to some error of order m+1:

x1 = x(t1)+O(∆ tm+1), (8)

where x(t1) here is the exact solution of the ODE at t1 starting from the initial
condition x(t0) = x0. Hence, m denotes the order of accuracy of a single step of the
scheme.

The most basic numerical algorithm to compute such a discrete trajectory x1, x2, . . .
is the Euler scheme, where F∆ t(xn) = xn +∆ t · f(xn, tn), which means the next ap-
proximation is obtained from the current one by:

xn+1 = xn +∆ t · f(xn, tn). (9)

This scheme has no practical relevance because it only offers accuracy of order
m= 1. A higher order can be reached by introducing intermediate points and thus di-
viding one step into several stages. For example, the famous “RK4” scheme, some-
times also called the Runge-Kutta method, has s = 4 stages and also order m = 4. It

6 Karsten Ahnert, Denis Demidov and Mario Mulansky

c1
c2 a2,1
c3 a3,1 a3,2
...

...
. . .

cs as,1 as,2 . . . cs,s−1
b1 b2 . . . bs−1 bs

(a) Generic Butcher Tableau with s stages.

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

(b) Coefficients for the RK4 method.

Table 1: Butcher Tableaus.

is defined as follows:

xn+1 = xn +
1
6

∆ t(k1 +2k2 +2k3 +k4), with

k1 = f(xn, tn),

k2 = f
(

xn +
∆ t
2

k1, tn +
∆ t
2

)
,

k3 = f
(

xn +
∆ t
2

k2, tn +
∆ t
2

)
,

k4 = f(xn +∆ t k3, tn +∆ t) .

(10)

Note, how the subsequent computations of the intermediate results ki depend on the
result of the previous stage k j<i.

More generally, a Runge-Kutta scheme is defined by its number of stages s and
a set of parameters c1 . . .cs, a21,a31,a32, . . . ,ass−1 and b1 . . .bs. The algorithm to
calculate the next approximation xn+1 is then given by:

xn+1 = xn +∆ t
s

∑
i=1

biki, where ki = f (xn +∆ t
i−1

∑
j=1

ai jk j, tn + ci ∆ t). (11)

The parameter sets ai, j, bi and ci define the so-called Butcher tableau (see Table 1)
and fully describe the specific Runge-Kutta scheme. The Butcher tableau for the
RK4 scheme above is given in Table 1b. Note, that the above schemes have a lower
triangular structure. For tableaus with entries in the upper right region the method
becomes an implicit RK-scheme and can not easily be solved.

3 Generic Runge-Kutta Implementation

In this section, we will develop an implementation of the Runge-Kutta schemes
described above. The code will be designed in such a way that it separates the al-
gorithm from the underlying computations and thus can be easily ported to GPUs.
We will therefore analyze the computational requirements of the Runge-Kutta algo-

Solving Ordinary Differential Equations on GPUs 7

Requirement Representation in C++ Example
Represent mathematical entities Template parameter vector<double>, double
Memory management Function specialization resize<state_type>
Vector iteration Template parameter container_algebra
Elementary operations Template parameter default_operations

Table 2: Computational requirements of the Runge-Kutta algorithms.

rithms and produce a modularized implementation. In this way, we will be able to
replace, for example, the memory management and the computational backend with
GPU variants and thus obtain a GPU implementation without re-implementing the
algorithm itself. This will allow us to easily use the same code with different GPU
technologies, i.e. CUDA and OpenCL.

3.1 Computational Requirements

To analyze the algorithmic parts involved in a Runge-Kutta scheme, we will start
with a straight-forward implementation that does not yet provide any modular-
ization. Listing 1 shows such an implementation for the RK4 algorithm as given
by Eq. (10). It defines a class runge_kutta4 that provides a member function
do_step which performs a single RK4 step given a system function system,
the current state x, the current time t and the time step dt. Note how we use
a template parameter System to specify the system function. This gives us al-
ready some flexibility as do_step immediately works with function pointers and
functor object, but also in more complicated cases like generalized functions ob-
jects from std::function or boost::function [?, ?] or even C++11 lamb-
das. Basically anything that defines a function call operator with the signature
operator()(state_type &x, state_type &k, double t) can be supplied as
system in do_step.

In the following we will extract the computational requirements for the Runge-
Kutta algorithms from the simple implementation in Listing 1. First, we need to
define a representation of the dependent variable x. In the runge_kutta4 class a
vector<double> from the Standard Template Library [?] is used for that purpose
(Line 7). After that, we need to define the type of the independent variable t (called
the time_type below). In Listing 1 (Line 13) we use double for this purpose. Then
we need to introduce variables for temporary results (Line 38) and allocate enough
memory for the temporaries, done in the constructor (Line 10). And finally we have
to perform the summation and multiplication, in general operations of the form:

y = a1x1 +a2x2 + · · ·+asxs, (12)

where y and xn are of state_type and as are of floating point type, typically
double. Hence, from a mathematical view point, these operations are vector-vector

8 Karsten Ahnert, Denis Demidov and Mario Mulansky

Listing 1: Simple Runge-Kutta4 implementation simple runge kutta4.hpp

5 class runge_kutta4 {
6 public:
7 typedef std::vector<double> state_type;
9 runge_kutta4(size_t N)

10 : N(N), x_tmp(N), k1(N), k2(N), k3(N), k4(N) { }
12 template<typename System>
13 void do_step(System system, state_type &x, double t, double dt)
14 {
15 const double dt2 = dt / 2;
16 const double dt3 = dt / 3;
17 const double dt6 = dt / 6;
19 system(x, k1, t);
20 for(size_t i = 0; i < N; ++i)
21 x_tmp[i] = x[i] + dt2 * k1[i];
23 system(x_tmp, k2, t + dt2);
24 for(size_t i = 0 ; i < N; ++i)
25 x_tmp[i] = x[i] + dt2 * k2[i];
27 system(x_tmp, k3, t + dt2);
28 for(size_t i = 0; i < N; ++i)
29 x_tmp[i] = x[i] + dt * k3[i];
31 system(x_tmp, k4, t + dt);
32 for(size_t i = 0; i < N; ++i)
33 x[i] += dt6*k1[i] + dt3*k2[i] + dt3*k3[i] + dt6*k4[i];
34 }
36 private:
37 const size_t N;
38 state_type x_tmp, k1, k2, k3, k4;
39 };

Listing 2: Runge-Kutta class with templated types
1 template<
2 class state_type,
3 class value_type = double,
4 class time_type = value_type
5 >
6 class runge_kutta4 {
7 // ...
8 };
9 typedef runge_kutta4< std::vector<double> > rk_stepper;

addition and scalar-vector multiplication. In the runge_kutta4 class above we
specifically perform the iteration over the elements of the state_type and use the
intrinsic operators + and * on those elements which are just double values here.
All the requirements identified above are again listed in Table 2. Note how in the
runge_kutta4 class in Listing 1 the parts to satisfy these requirements are hard-

Solving Ordinary Differential Equations on GPUs 9

coded into the class. If we want to change, for example, the state_type to some
construct that resides on the GPU, we have to completely rewrite the class for a new
state_type, but also to change the memory allocation and the vector operations,
thus rewriting the whole algorithm, e.g. in terms of a new class runge_kutta4_gpu.
In the next section, however, we will present a modularized implementation based
on the requirements identified here, which allows to exchange the fundamental
types, memory allocation and vector computations so that the code can be ported
to GPUs without changing the algorithm itself.

3.2 Modularized Design

In the following, we will generalize the basic implementation above by moving
the parts addressing the several requirements out of the runge_kutta4 class and
keeping only the essential algorithm.

We start with the fundamental types used to represent the mathematical objects in
the Runge-Kutta schemes Eq. (10). From a computational point of view we identify
three different kinds of objects:

1. The state of the solution at some time x(t), typically more dimensional and rep-
resented by a vector<double>.

2. The independent variable t, typically the time and represented by a double.
3. Parameters of the Runge-Kutta scheme as given in the Butcher Tableau (Table 1),

usually also represented by double values.

The standard way to generalize an algorithm for arbitrary types in C++ is to intro-
duce template parameters. We will also follow this approach and define three class
template parameters state_type, value_type and time_type. Listing 2 shows
the skeleton of the new runge_kutta4 class. Note how we use default template pa-
rameters to provide value_type and time_type as double, so for the most typical
case the user only has to specify the state_type, as shown exemplarily in Line 9.
It should be noted that the derivatives might require a representation different from
the state, especially if arithmetic types with dimensions are used, for example the
ones from Boost.Units [?].

Let us now consider the memory allocation. In the basic implementation in List-
ing 1 this is done in the constructor which therefore requires the system size. This
implementation relies on the existence of a resize and size member functions of
the state_type, which is not generic enough because the state_type does not
need to be a vector anymore, or even a container at all. Therefore we will change
the implementation and introduce a templated helper function resize that takes
care of the resizing and can be specialized by the user for any given state_type.
The result is outlined in Listing 3. The resize function here adjusts the allocated
memory of some object out using the size of the given object in. This is the most
flexible way. With this technique the runge_kutta4 class takes care of the memory
automatically, and it works out-of-the-box for all containers that provide a size and

10 Karsten Ahnert, Denis Demidov and Mario Mulansky

Listing 3: Memory allocation
1 template<class state_type>
2 void resize(const state_type &in, state_type &out) {
3 // standard implementation works for containers
4 out.resize(in.size());
5 }
7 // specialization for boost::array
8 template<class T, size_t N>
9 void resize(const boost::array<T, N> &, boost::array<T,N>&) {

10 /* arrays don’t need resizing */
11 }
13 template< ... >
14 class runge_kutta4 {
15 // ...
16 template<class Sys>
17 void do_step(Sys sys, state_type &x, time_type t, time_type dt)
18 {
19 adjust_size(x);
20 // ...
21 }
23 void adjust_size(const state_type &x) {
24 resize(x, x_tmp);
25 resize(x, k1);
26 resize(x, k2);
27 resize(x, k3);
28 resize(x, k4);
29 }
30 }

resize member functions. If some other state_type is employed, the user can im-
plement an overload of the resize function to tell the runge_kutta4 how to allo-
cate memory. One example could be fixed-size arrays boost::array<double,N>,
which live on the stack and do not require manual memory allocation. Hence, the
resize function would just be empty (and disappear during the optimization step of
the compilation), shown in Lines 7–11 in Listing 3. Note that this implementation
supports out of the box the case when the system size changes during the integration,
i.e. if the size of x changes between do_step calls. However, checking the system
size at each step of the algorithm is not necessary for almost all situations and thus
it is a waste of performance. This can be solved by adding a trivial logic that only
calls resize during the first call of do_step (not shown here for clarity).

Now we arrive at the final and most difficult point: the abstraction of the nu-
merical computation. As seen from the mathematical definition of the Runge-Kutta
scheme in Eq. (11), we need to calculate vector-vector sums and scalar-vector prod-
ucts to perform a Runge-Kutta step. In the simplistic implementation above (List-
ing 1), this is done by explicit for loops and arithmetic operators + and *. In our ab-
straction of this computation, we divide these computations into two distinct parts:
iteration and operation. The first one will be responsible for iterating over the ele-

Solving Ordinary Differential Equations on GPUs 11

Listing 4: Example algebra for the RK4 container algebra.hpp

6 struct container_algebra {
7 template<class S1, class S2, class S3, class Op>
8 static void for_each3(S1 &s1, S2 &s2, S3 &s3, Op op) {
9 const size_t dim = s1.size();

10 for(size_t n = 0; n < dim; ++n)
11 op(s1[n], s2[n], s3[n]);
12 }
20 };

Listing 5: Example operations for the RK4 default operations.hpp

6 struct default_operations {
7 template<class Fac1 = double, class Fac2 = Fac1>
8 struct scale_sum2 {
9 typedef void result_type;

11 const Fac1 alpha1;
12 const Fac2 alpha2;
14 scale_sum2(Fac1 alpha1, Fac2 alpha2)
15 : alpha1(alpha1), alpha2(alpha2) { }
17 template<class T0, class T1, class T2>
18 void operator()(T0 &t0, const T1 &t1, const T2 &t2) const {
19 t0 = alpha1 * t1 + alpha2 * t2;
20 }
21 };
48 };

ments of the involved state types, i.e. it addresses the vector character of the com-
putation. The code structure that performs these iterations will be called Algebra.
The operation on the other hand represents the computation that is performed for
each element, i.e. within the iteration. The respective code structure will be called
Operation.

We start with the Algebra. For the RK4 algorithm we need to provide two func-
tions that do iteration over three and six container instances. A possible Algebra is
presented in Listing 4.

The iteration is performed in terms of for_each functions that are gathered in
a struct called container_algebra. The for_each functions expect a number
of containers and an operation object as parameters. They simply perform the it-
eration over the elements of the containers and execute the given operation on
each of the container’s elements. Here we use a raw hand written for-loop which
requires a size() member function and the []-operator for the given container
types S1,S2. . . . This loop could easily be generalized to use iterators which is
the preferred and recommended way in C++ to iterate over containers. Inside the
loop the functors op are applied to the elements of the containers. Listing 5 shows
an exemplary implementation of such operations designed to be used within the

12 Karsten Ahnert, Denis Demidov and Mario Mulansky

Listing 6: Generic RK4 implementation runge kutta4.hpp

10 template<class state_type, class value_type = double,
12 class time_type = value_type,
13 class algebra = container_algebra,
14 class operations = default_operations>
15 class runge_kutta4 {
16 public:
17 template<typename System>
18 void do_step(System &system, state_type &x,
19 time_type t, time_type dt)
20 {
21 adjust_size(x);
22 const value_type one = 1;
23 const time_type dt2 = dt/2, dt3 = dt/3, dt6 = dt/6;
25 typedef typename operations::template scale_sum2<
26 value_type, time_type> scale_sum2;
28 typedef typename operations::template scale_sum5<
29 value_type, time_type, time_type,
30 time_type, time_type> scale_sum5;
32 system(x, k1, t);
33 algebra::for_each3(x_tmp, x, k1, scale_sum2(one, dt2));
35 system(x_tmp, k2, t + dt2);
36 algebra::for_each3(x_tmp, x, k2, scale_sum2(one, dt2));
38 system(x_tmp, k3, t + dt2);
39 algebra::for_each3(x_tmp, x, k3, scale_sum2(one, dt));
41 system(x_tmp, k4, t + dt);
42 algebra::for_each6(x, x, k1, k2, k3, k4,
43 scale_sum5(one, dt6, dt3, dt3, dt6));
44 }
45 private:
46 state_type x_tmp, k1, k2, k3, k4;
48 void adjust_size(const state_type &x) {
49 resize(x, x_tmp);
50 resize(x, k1); resize(x, k2);
51 resize(x, k3); resize(x, k4);
52 }
53 };

container_algebra above. It consists of two functor types organized in a struct
called default_operations. The scale_sum2 works with the for_each3 above,
and scale_sum5 interacts with for_each6. Those functors consist of a number of
parameters alpha1,alpha2. . . and a function call operator that calculates a simple
product-sum (Listing 5).

With these abstractions we have moved the computational details away from
the algorithm into separate code structures and thus reached a generic implemen-
tation of the RK4 algorithm (shown in Listing 6). The runge_kutta4 class got
two more template parameters specifying the algebra and operations, i.e. the com-
putational backend used for the calculation. We use the container_algebra and

Solving Ordinary Differential Equations on GPUs 13

default_operations from Listings 4 and 5 as the default values that will work for
almost all cases. In the do_step method we now use the for_each functions from
the given Algebra in combination with the scale_sum functors from the given
Operations to perform the required computations. So the explicit for-loops, that
were hard-coded into the algorithm in the first implementation (Listing 1), have been
separated into two parts, an algebra and operations. Those parts are supplied to
the algorithm in terms of template parameters and can thus be easily replaced with-
out changing the algorithm itself. This flexibility now allows us to port the RK4
implementation to GPUs. The idea is to first provide a GPU data structure, e.g.
a gpu_vector with the respective resize functions as required by the algorithm
(Listing 3). Then we only need a gpu_algebra and gpu_operations to do the
vector computations on the GPU in a parallelized way. Assuming we have imple-
mented those pieces, the following code would give us a RK4 algorithm running on
the GPU:

typedef runge_kutta4< gpu_vector<double>, double, double,
gpu_algebra, gpu_operations > gpu_stepper;

So with the generalized implementation we have greatly simplified the problem
of implementing a Runge-Kutta scheme on the GPU. Instead of having to start
from scratch, we now only have to implement a basic data structure for the GPU
(gpu_vector), provide low-level functions for memory allocation (resize), itera-
tion (algebra) and fundamental calculations (operations). But the real strength
of this approach is that these remaining problems are so fundamental that they are
already solved for GPUs. Of course, there are libraries that provide data structures
and memory management for the GPU, as well as parallelized iteration and element-
wise computations. In the following sections we will introduce two such libraries
and show how they are combined with the RK4 implementation from Listing 6 to
produce a GPU-version.

It should be noted that this approach of separating the algorithm from the com-
putations is not only valuable when aiming at GPU computations. With the imple-
mentation above we can, for example, also easily create a RK4 algorithm that work
with arbitrary precision types instead of the usual double. Another example would
be an ODE solver based on interval arithmetic [?], also easily implementable by
providing some interval_operations.

3.3 Lorenz Attractor Example

Before considering the GPU backends we want to show how to use the codes above
to compute a trajectory of the famous Lorenz system (5) introduced earlier in sec-
tion 2.1. Listing 7 shows the implementation of a simulation of a trajectory for this
system based on the runge_kutta4 class developed above. As seen there, all that is
left to do is to define the state_type, implement the RHS of the ODE, here done
in terms of a functor lorenz, and define the initial conditions (Line 30). Now we

14 Karsten Ahnert, Denis Demidov and Mario Mulansky

Listing 7: Computing a trajectory of the Lorenz system lorenz single.cpp

1 #include <iostream>
2 #include <vector>
4 #include "runge_kutta4.hpp"
6 using namespace std;
8 typedef std::vector<double> state_type;
9 typedef ncwg::runge_kutta4< state_type > rk4_type;

11 struct lorenz {
12 const double sigma, R, b;
13 lorenz(const double sigma, const double R, const double b)
14 : sigma(sigma), R(R), b(b) { }
16 void operator()(const state_type &x,state_type &dxdt,double t)
17 {
18 dxdt[0] = sigma * (x[1] - x[0]);
19 dxdt[1] = R * x[0] - x[1] - x[0] * x[2];
20 dxdt[2] = -b * x[2] + x[0] * x[1];
21 }
22 };
24 int main() {
25 const int steps = 5000;
26 const double dt = 0.01;
28 rk4_type stepper;
29 lorenz system(10.0, 28.0, 8.0/3.0);
30 state_type x(3, 1.0);
31 x[0] = 10.0;
32 for(size_t n=0 ; n<steps ; ++n) {
33 stepper.do_step(system, x, n*dt, dt);
34 cout << n*dt << ’ ’;
35 cout << x[0] << ’ ’ << x[1] << ’ ’ << x[2] << endl;
36 }
37 }

can use the Runge-Kutta algorithm implemented above (Listing 6) to iterate along
the trajectory using a step size of ∆ t = 0.1.

4 GPU Backends

Having reduced the problem of running the ODE solver on GPUs to memory man-
agement and some basic algebra operations, we finally come to the point of imple-
menting those necessities. Instead of relying on low-level GPU programming and
thus essentially reinventing the wheel, we will use existing high-level libraries that
offer GPU data structures as well as routines for algebraic operations. To cover all
available GPU technologies we will develop two GPU backends, the first one based
on the NVIDIA CUDA technology, the second one for the OpenCL framework. For
the CUDA environments, we will employ the Thrust library [?], which is part of the

Solving Ordinary Differential Equations on GPUs 15

NVIDIA CUDA SDK [?]. In the case of OpenCL, we will rely on the VexCL li-
brary [?], an open source library developed at the Supercomputer Center of Russian
Academy of Sciences.

4.1 Thrust Backend

The Thrust library is a C++ template library that provides containers and algorithms
similar to the Standard Template Library (STL) [?], but capable of running paral-
lel on a CUDA GPU. Besides the CUDA backend, Thrust also supports CPU par-
allelization via OpenMP [?] and Intel’s Thread Building Block (TBB) [?], config-
urable at compile time by preprocessor variables. As said above, Thrust is part of the
NVIDIA CUDA framework and thus requires the use of the nvcc compiler to gen-
erate code that can be executed on GPUs. For a thorough introduction into CUDA
programming and Thrust in particular, we refer to the respective documents [?, ?].

To handle the memory on the GPU, Thrust provides a thrust::device_vector
template class similar to std::vector from the STL. This will be our basic
state_type representing the state x of the dynamical system. As Thrust mimics the
STL, the thrust::device_vector also has size and resize member functions,
which means that the memory management for std::vectors given in Listing 3
also works nicely with thrust::device_vectors — no specialization is required.
This is a nice example of how well-designed libraries, such as Thrust, decrease the
required programming effort by increasing the re-usability of your code.

To ensure that the vector computations are executed in parallel on the GPU, we
introduce a thrust_algebra as a replacement of the container_algebra (see
Listing 4) above. To implement the for_each3 and for_each6 functions required
in the algebra, we will employ Thrust’s thrust::for_each routine. This routine
has the following signature:

thust::for_each(Iterator begin, Iterator end, UnaryOperator op)

where the iterators begin and end define a range of data in a device_vector and
op defines the operation performed for each element of the sequence. As seen from
the signature above, thrust::for_each iterates only over a single range from
begin to end, but for our for_each3 and for_each6 we need to iterate over
several device vectors at once. Fortunately, this can be easily achieved by using
zip_iterators that combine an arbitrary number of iterators into a single iterator
and thus allows us to use thrust::for_each for iterating over several ranges at
once. The implementation of the thrust_algebra based on thrust::for_each

and make_zip_iterator in combination with make_tuple is shown in Listing 8.
The usage of make_zip_iterator and make_tuple is almost self-explanatory:
make_tuple combines the given parameters (iterators in this case) into a single
tuple, and make_zip_iterator then converts this tuple of iterators into a single
zip_iterator that can then be passed to the for_each algorithm. Note that the
implementation of the for_each6 algorithm is omitted here for clarity.

16 Karsten Ahnert, Denis Demidov and Mario Mulansky

Listing 8: The Thrust Algebra thrust algebra.hpp

6 struct thrust_algebra {
7 template<class S1, class S2, class S3, class Op>
8 static void for_each3(S1 &s1, S2 &s2, S3 &s3, Op op) {
9 thrust::for_each(

10 thrust::make_zip_iterator(thrust::make_tuple(
11 s1.begin(), s2.begin(), s3.begin())),
12 thrust::make_zip_iterator(thrust::make_tuple(
13 s1.end(), s2.end(), s3.end())),
14 op);
15 }
39 };

Listing 9: The Thrust Operations thrust operations.hpp

9 struct thrust_operations {
10 template<class Fac1 = double, class Fac2 = Fac1>
11 struct scale_sum2 {
12 const Fac1 m_alpha1;
13 const Fac2 m_alpha2;
15 scale_sum2(const Fac1 alpha1, const Fac2 alpha2)
16 : m_alpha1(alpha1), m_alpha2(alpha2) { }
18 template< class Tuple >
19 __host__ __device__ void operator()(Tuple t) const {
20 thrust::get<0>(t) = m_alpha1 * thrust::get<1>(t) +
21 m_alpha2 * thrust::get<2>(t);
22 }
23 };
48 };

Of course, we also need to replace the default_operations, containing the
scale_sum functors (see Listing 5), by a CUDA-compatible implementation. These
functions contain the code that in the end will run in parallel on the GPU, which
means that they will be compiled into so-called kernels. Therefore, they need to
be decorated by specific compiler instruction to make the nvcc compiler generate
specific GPU code for those functions. For this purpose, CUDA provides the key-
words __device__ and __host__. The former indicates that a function will run on
a GPU, and the latter assures that the compiler will also generate a CPU version.
Listing 9 shows the implementation of the thrust_operations. The keywords are
used before the function definition in Line 19.

Furthermore, we have to bear in mind that since we used zip_iterators in the
for_each, the scale_sum functors also get the elements from several ranges packed
in a single tuple. To access the individual elements, we have to unpack the tuple,
which can be done by the Thrust’s get<N>(tuple) function that simply returns the
N-th entry of the given tuple. Together with the thrust_algebra (see Listing 8)

Solving Ordinary Differential Equations on GPUs 17

this completes the CUDA backend for the RK4 scheme. The following code defines
a gpu_stepper class that computes an approximate trajectory using the GPU:

typedef thrust::device_vector<double> state_type;
typedef runge_kutta4< state_type, double, double,

thrust_algebra, thrust_operations > gpu_stepper_type;

With this, we have successfully ported the RK4 scheme to GPUs using func-
tionality from the Thrust library. However, for a complete simulation we also have
to implement the RHS function such that it is also computed on the GPU. This is
highly non-trivial and will be discussed in detail for several examples in Section 6.

4.2 VexCL Backend

The Thrust backend above allows to run ODE integration on NVIDIA GPUs only
as it is based on the CUDA technology. To address a wider range of hardware, we
will now present a computational backend based on OpenCL (Open Computing
Language) [?]. OpenCL supports NVIDIA as well as AMD/ATI GPUs, but can also
be used for parallel runs on multi-core CPUs.

As above, we will not start from scratch but rather employ the modern, well-
designed GPGPU library VexCL [?]. The library does not only provide the required
data structures, but also covers the vector operations which makes our work even
simpler than with Thrust. As the data structure for representing a state_type we
will use a vex::vector, which is again similar to a std::vector. Listing 10
shows the resize function specialized for the vex::vector<T>. Note how we
have to pass on the list of OpenCL command queues that contains crucial infor-
mation about where the data will reside (i.e. which compute device) to the vec-
tor’s resize function. Just like the required size, we extract this information from
the given vex::vector instance in. Additionally to the usual vectors, VexCL also
provides a vex::multivector<T,N>, which is basically a group of N instances of
vex::vector<T> and can be quite handy for some problems. Hence, we also pro-
vide the resize functionality for vex::multivector<T,N> in Listing 10.

We are left with the vector operations, but as mentioned above this is very simple
with VexCL. Being a library designed specifically for linear algebra, VexCL natively
supports vector-vector addition and scalar-vector multiplication. Assuming x, y and
z are of type vex::vector<double> and a and b are double values, the following
code performs the element-wise summation and scalar multiplication of the vectors:

z = a * x + b * y;

That means that the VexCL library intrinsically performs the iteration over the ele-
ments of the vector in parallel on an OpenCL compute device (i.e. a GPU). Math-
ematically, one can say that the vex::vector together with the standard + and *
operators form a vector space. Hence, it is not required for us to implement a par-
allelized iteration ourselves and the existence of an algebra is not necessarily re-
quired, in contrast to the Thrust backend above (c.f. Listing 8). But as the algebra

18 Karsten Ahnert, Denis Demidov and Mario Mulansky

Listing 10: Memory allocation for VexCL. vexcl resize.hpp

11 template<class T>
12 void resize(const vex::vector<T> &in, vex::vector<T> &out) {
13 out.resize(in.queue_list(), in.size());
14 }
16 template<class T, size_t N>
17 void resize(const vex::multivector<T,N> &in,
18 vex::multivector<T,N> &out)
19 {
20 out.resize(in.queue_list(), in.size());
21 }

Listing 11: Vector space algebra. vector space algebra.hpp

6 struct vector_space_algebra {
7 template<class S1, class S2, class S3, class Op>
8 static void for_each3(S1 &s1, S2 &s2, S3 &s3, Op op) {
9 op(s1, s2, s3);

10 }
15 };

is part of the structure of our ODE solver and can not be neglected, we provide a
trivial vector_space_algebra that simply forwards the operation directly to the
vectors without performing an iteration. This is shown in Listing 11.

This implementation is not only useful for VexCL and its vex::vector, but
also for any other vector library that provides vector operations in terms of + and *
operators, e.g. MTL4 [?] or Boost.uBLAS [?]. To account for this generality we call
this trivial algebra a vector_space_algebra, as it works with any type that forms
a vector space. From the above it is also clear that for VexCL we do not need to
take special care of the operations. As VexCL redefines the operators + and * itself,
we can simply plug in the default_operations from the beginning (Listing 5).
Therefore, the computational backend for OpenCL based on VexCL is finished and
we can construct an algorithm that is capable of running on a GPU device with the
following code:

typedef vex::vector<double> state_type;
typedef runge_kutta4< state_type, double, double,

vector_space_algebra, default_operations > gpu_stepper_type;

Solving Ordinary Differential Equations on GPUs 19

5 The Boost.odeint Library

Above, we have shown how to implement the RK4 scheme in a generic way such
that it can be easily ported to GPUs. We have demonstrated the strengths of this
approach by providing two backends that address CUDA and OpenCL devices re-
spectively. However, there is a vast potential for improvement and extension of this
code. Although this goes well beyond the scope of the present text, we want to men-
tion that a highly sophisticated implementation of the ideas and techniques above
exists in the Boost.odeint library [?, ?]. Boost.odeint also separates memory allo-
cation, iteration and fundamental operations from the actual algorithm in the same
way as described above in Section 3.2. But in contrast to the ad hoc implementa-
tion presented here, Boost.odeint is a fully grown library consisting of about 25,000
lines of C++ code. It includes a vastly larger functionality and we shortly list the
most important points below:

• Arbitrary explicit Runge-Kutta schemes, predefined schemes: Dormand-Prince
5, Cash-Karp, Runge-Kutta78.

• Symplectic Runge-Kutta-Nyström schemes.
• Variable order method: Bulirsch-Stoer.
• Multistep methods: Adams-Bashforth, Adams-Bashforth-Moulton.
• Implicit routines: Rosenbrock method, implicit Euler.
• Step-size control and dense output.
• Integrate routines with observer support.
• Iterator and range interfaces.
• Support of arbitrary precision arithmetic with Boost.Multiprecision.
• Support of additional backends: eigen [?], GSL vectors [?], Math Kernel Li-

brary [?], Matrix Template Library [?], ViennaCL [?].

If Boost.odeint provides the necessary algorithms and functionality to solve a prob-
lem, we strongly advise to use this library. However, some problems require spe-
cialized schemes or additional computations. In this case the code developed in the
previous pages should represent a good starting point to develop a specific algorithm
in a generalized way that is easily portable to GPUs.

6 Example Problems

6.1 Lorenz Attractor Ensemble

In the first example we consider the Lorenz system (5). Solutions of the Lorenz
system usually furnish very interesting behavior in dependence on one of its pa-
rameters. For example, one might want to study the chaoticity in dependence on
the parameter R. Therefore, one would create a large set of Lorenz systems (each

20 Karsten Ahnert, Denis Demidov and Mario Mulansky

Listing 12: lorenz thrust v1.hpp

30 typedef thrust::device_vector<double> state_type;
31 struct lorenz_system {
40 struct lorenz_functor {
41 double sigma, b;
42 lorenz_functor(double sigma, double b)
43 : sigma(sigma), b(b) {}
45 template<class T>
46 __host__ __device__ void operator()(T t) const {
47 double x = thrust::get<0>(t);
48 double y = thrust::get<1>(t);
49 double z = thrust::get<2>(t);
50 double R = thrust::get<3>(t);
52 thrust::get<4>(t) = sigma * (y - x);
53 thrust::get<5>(t) = R * x - y - x * z;
54 thrust::get<6>(t) = -b * z + x * y;
55 }
56 };
58 template<class State, class Deriv>
59 void operator()(const State &x, Deriv &dxdt, double t) const {
60 BOOST_AUTO(start,
61 thrust::make_zip_iterator(thrust::make_tuple(
62 x.begin(),
63 x.begin() + n,
64 x.begin() + 2 * n,
65 R.begin(),
66 dxdt.begin(),
67 dxdt.begin() + n,
68 dxdt.begin() + 2 * n
69))
70);
72 thrust::for_each(start, start+n, lorenz_functor(sigma, b));
73 }
74 };

with a different parameter R), pack them all into one system and solve them si-
multaneously. In a real study of chaoticity one may also calculate the Lyapunov
exponents [?], which requires to solve the Lorenz system and their linear perturba-
tions.

In the Thrust version of the example we define the state type as device_vector
of size 3n, where n is the system size. The X , Y , and Z components of the state are
held in the continuous partitions of the vector. The system functor holds the model
parameters and provides a function call operator with the necessary signature. Here
we use the standard Thrust technique of packing the state components into a zip
iterator which is then passed to a thrust::for_each algorithm (Listing 12).

The system function object for the VexCL version of the Lorenz attractor exam-
ple is more compact than the Thrust variant because VexCL supports a rich set of
vector expressions. We represent the three components of attractor trajectory as a

Solving Ordinary Differential Equations on GPUs 21

Listing 13: lorenz vexcl v1.cpp

28 typedef vex::multivector<double, 3> state_type;
29 struct lorenz_system {
36 void operator()(const state_type &x, state_type &dxdt,
37 double t) const
38 {
39 dxdt = std::tie(
40 sigma * (x(1) - x(0)),
41 R * x(0) - x(1) - x(0) * x(2),
42 x(0) * x(1) - b * x(2));
43 }
44 };

multivector<double,3>. Since VexCL provides all necessary overloads for the
multivector type, we are able to use the vector_space_algebra in this case
(Listing 13).

Figure 1 shows performance results for the Thrust, VexCL, and CPU versions
of the Lorenz attractor example. Time in seconds required to make a 1000 of RK4
iterations is plotted against the ensemble size N. Lines denoted “Thrust v1” and
“VexCL v1” correspond to the versions presented above. “CPU v1” is the Thrust
version compiled for the OpenMP backend. Times for the Thrust and the VexCL
versions of the code are given for the NVIDIA Tesla K20c GPU. Times for the CPU
runs are given for the Intel Core i7 920 CPU (all four cores of which were used
through OpenMP technology). It is clear from the figure that the initial implementa-
tions for the Thrust and the VexCL libraries perform equally well for large problem
sizes and are about 14 times faster than the CPU version. VexCL has higher initial-
ization costs and hence is a bit slower than Thrust for smaller problems. However,
the distinction seems not as important once we note that both the Thrust and the
VexCL versions loose to the CPU version for N . 104.

Note that both the Thrust and the VexCL versions above have the same drawback.
Namely, both of them use device vectors as state type. Hence, intermediate state
variables used in the steppers are stored in the global GPU memory. Moreover, each
operation results in a launch of a separate compute kernel. A kernel launch has
nonzero overhead both in CUDA and in OpenCL, but more importantly, each kernel
needs to both read and write intermediate states from/to the global GPU memory.
Since the problem is memory bound, this leads to a severe drop in performance.

We could overcome the above problem by providing a monolithic kernel which
would encode the stepper logic and provide the complete solution in a single launch.
However, the use of such kernel would also mean the loss of the flexibility we
achieved so far by separation of algorithm and the underlying computations: one
would have to completely re-implement the kernel for each new stepper. Luckily,
VexCL library allows us to generate such a fused kernel automatically by providing
the vex::symbolic<T> class template. Instances of the type dump to the specified
output stream any arithmetic operations they are being subjected to. For example,

22 Karsten Ahnert, Denis Demidov and Mario Mulansky

102 103 104 105 106 107

N

10−3

10−2

10−1

100

101

102

103

T
im

e
p

er
10

00
R

K
4

st
ep

s

CPU v1

CPU v2

Thrust v1

VexCL v1

VexCL v2

Fig. 1: Performance results for the Lorenz attractor example.

in the following code snippet two symbolic variables are declared and participate in
an arithmetic expression:

vex::generator::set_recorder(std::cout);
vex::symbolic<double> x = 6, y = 7;
x = sin(x * y);

This generates the following output:

double var1 = 6;
double var2 = 7;
var1 = sin((var1 * var2));

This is implemented by overloading arithmetic operators and mathematical func-
tions for the symbolic classes. So when two symbolic variables are being added, the
overloaded addition operator just outputs names of the variables divided by symbol
“+” to the specified output stream. By defining the state type to be boost::array<
vex::symbolic<double>, 3>, and using the same algebra and the system func-
tion as in Listing 7, we are able to record the sequence of arithmetic operations
made by a Runge-Kutta stepper. This gives us a fused kernel which is as effective
as a manually written one (Listing 14).

This approach has some obvious restrictions: namely, it only supports embarrass-
ingly parallel problems (no data dependencies between threads of execution), and it
does not allow conditional statements or loops with non-constant number of itera-
tions. But when the method works, it works very well. This version of the code is
denoted “VexCL v2” on Figure 1 and is about 10 times faster than the initial VexCL
implementation.

Solving Ordinary Differential Equations on GPUs 23

Listing 14: lorenz vexcl v2.cpp

34 typedef vex::symbolic<double> sym_vector;
35 typedef boost::array<sym_vector, 3> sym_state;
64 // Custom kernel body will be recorded here
65 std::ostringstream body;
66 vex::generator::set_recorder(body);
68 // State types that would become kernel parameters
69 sym_state sym_S = {{
70 sym_vector(sym_vector::VectorParameter),
71 sym_vector(sym_vector::VectorParameter),
72 sym_vector(sym_vector::VectorParameter)
73 }};
75 sym_vector sym_R(sym_vector::VectorParameter, sym_vector::Const);
77 // Stepper type
78 odeint::runge_kutta4_classic<
79 sym_state, double, sym_state, double,
80 odeint::container_algebra, odeint::default_operations
81 > stepper;
83 // Record single RK4 step
84 lorenz_system sys(sym_R);
85 stepper.do_step(sys, sym_S, 0, dt);
87 // Generate the kernel from the recorded sequence
88 auto kernel = vex::generator::build_kernel(ctx, "lorenz",
89 body.str(), sym_S[0], sym_S[1], sym_S[2], sym_R);
91 // Real state initialization
92 vex::vector<double> X(ctx, n), Y(ctx, n), Z(ctx, n), R(ctx, n);
93 X = Y = Z = 10.0;
94 R = Rmin + dR * vex::element_index();
99 // Integration loop

100 for(double t = 0; t < t_max; t += dt)
101 kernel(X, Y, Z, R);

We use a similar approach in order to accelerate the CPU version of the exam-
ple. Namely, we create a Boost.odeint stepper for a single Lorenz attractor (state
type is boost::array<double,3>), and then we use an outer loop which iterates
over the complete ensemble (Listing 15). This version of the code (“CPU v2”)
uses less memory and is more cache-friendly. As a result, it is about 6 times
faster than the Thrust example with the OpenMP backend. Unfortunately, the
Thrust library does not allow the same type of optimization. We could in princi-
ple create a device function that would operate on a single attractor (by calling
runge_kutta4<...>::do_step from inside the function), and apply the function
to the complete ensemble with the help of the thrust::for_each algorithm. But
CUDA requires all device functions to be decorated with __device__ keyword, and
the Boost.odeint functions are not marked as such.

24 Karsten Ahnert, Denis Demidov and Mario Mulansky

Listing 15: lorenz cpu v2.cpp

67 #pragma omp parallel for
68 for(size_t i = 0; i < n; ++i) {
69 odeint::runge_kutta4_classic<
70 state_type, double, state_type, double,
71 odeint::container_algebra, odeint::default_operations
72 > stepper;
74 lorenz_system sys(R[i]);
75 for(double t = 0; t < t_max; t += dt)
76 stepper.do_step(sys, x[i], t, dt);
77 }

6.2 Chain of Coupled Phase Oscillators

As a second example we consider a chain of coupled phase oscillators. A phase
oscillator describes the dynamics of an autonomous oscillator [?]. Its evolution is
governed by the phase ϕ , which is a 2π-periodic variable growing linearly in time,
i.e. ϕ̇ = ω , where ω is the phase velocity. The amplitude of the oscillator does
not occur in this equation, so interesting behavior can only be observed if many of
such oscillators are coupled. In fact, such a system can be used to study phenomena
like synchronization, wave and pattern formation, phase chaos, or oscillation death
[?, ?]. It is a prominent example of an emergent system where the coupled system
shows a more complex behavior than its constituents.

The concrete example we analyze here is a chain of nearest-neighbor coupled
phase oscillators [?]:

ϕ̇i = ωi + sin(ϕi+1−ϕi)+ sin(ϕi−ϕi−1). (13)

The index i denotes here the i-th phase in the chain. Note, that the phase velocity is
different for each oscillator.

From the implementation point of view, the main difference between the phase
oscillator chain and the Lorenz attractor examples is that in the former example the
values of neighboring vector elements are needed in order to compute the system
function. In the Thrust version this is implemented with help of fancy iterators.
First, we define device functors left_nbr and right_nbr returning left and right
neighbor positions for the i-th element. Then we create a couple of permutation
iterators from transformed counting iterators (with left_nbr and right_nbr used
as transformation functors), pack the resulting iterators together with iterators x,
omega, and dxdt into a zip_iterator. Finally we call the thrust::for_each

algorithm with the accordingly defined system functor (Listing 16).
We use a similar technique for the VexCL version of the example. VexCL pro-

vides the vex::permutation function that allows to permute arbitrary expressions
(Listing 17). Note how the use of C++11 auto keyword in Lines 38–40 allows us to
conveniently capture intermediate expressions and thus simplify the code in Line 42.

Solving Ordinary Differential Equations on GPUs 25

Listing 16: po thrust.cpp

25 typedef thrust::device_vector< double > state_type;
26 struct phase_oscillators {
33 struct left_nbr : thrust::unary_function<size_t, size_t> {
34 __host__ __device__ size_t operator()(size_t i) const {
35 return (i > 0) ? i - 1 : 0;
36 }
37 };
47 struct sys_functor {
48 template< class Tuple >
49 __host__ __device__ void operator()(Tuple t) {
50 double phi_c = thrust::get<0>(t);
51 double phi_l = thrust::get<1>(t);
52 double phi_r = thrust::get<2>(t);
53 double omega = thrust::get<3>(t);
55 thrust::get<4>(t) = omega +
56 sin(phi_r - phi_c) + sin(phi_c - phi_l);
57 }
58 };
60 void operator() (const state_type &x, state_type &dxdt,
61 double dt)
62 {
63 BOOST_AUTO(start, thrust::make_zip_iterator(
64 thrust::make_tuple(
65 x.begin(),
66 thrust::make_permutation_iterator(
67 x.begin(),
68 thrust::make_transform_iterator(
69 thrust::counting_iterator<size_t>(0),
70 left_nbr()
71)
72),
73 thrust::make_permutation_iterator(
74 x.begin(),
75 thrust::make_transform_iterator(
76 thrust::counting_iterator<size_t>(0),
77 right_nbr(n - 1)
78)
79),
80 omega.begin(),
81 dxdt.begin()
82)
83)
84);
86 thrust::for_each(start, start + n, sys_functor());
87 }
88 };

26 Karsten Ahnert, Denis Demidov and Mario Mulansky

Listing 17: po vexcl.cpp

25 typedef vex::vector<double> state_type;
26 struct phase_oscillators {
31 void operator()(const state_type &phi, state_type &dxdt,
32 double t) const
33 {
34 VEX_FUNCTION(left, size_t(size_t),
35 "return (prm1 > 0) ? prm1 - 1 : 0;");
36 VEX_FUNCTION(right, size_t(size_t, size_t),
37 "return (prm1 >= prm2) ? prm2 : prm1 + 1;");
39 auto idx = vex::element_index();
40 auto phi_l=vex::permutation(left(idx))(phi);
41 auto phi_r=vex::permutation(right(idx,phi.size()-1))(phi);
43 dxdt = omega + sin(phi_r - phi) + sin(phi - phi_l);
44 }
45 };

102 103 104 105 106 107

N

10−2

10−1

100

101

102

103

T
im

e
p

er
10

00
R

K
4

it
er

at
io

n
s

CPU

Thrust

VexCL

Fig. 2: Performance results for the chain of coupled phase oscillators example.

The performance results for the chain of coupled phase oscillators are presented
in Figure 2. Again, the Thrust and the VexCL versions show similar results for large
problems (with VexCL being faster by about 20%). The GPU versions are 70–80
times faster than the CPU version (which is the Thrust version compiled for the
OpenMP backend). The higher acceleration w.r.t. the Lorenz attractor example is
explained by the higher FLOP/byte ratio of the problem.

Solving Ordinary Differential Equations on GPUs 27

6.3 Molecular dynamics

Molecular dynamics (MD) are a simulation technique for a large number of small
interacting particles, typically with local interaction forces. Examples are systems
of molecules [?], granular systems [?], or coarse-grained models of fluid molecules.

Here, we study a two dimensional MD simulation described by the following
equations of motion for particle i

miẍi = floc(xi)+ f f ric(ẋi)+ ∑
j∈Si

fint(xi,x j) . (14)

mi is the mass of the particle, floc is a local external force, for example the gravity.
fint(xi,x j) is the (low-range) interaction between the particles i and j and the sum
goes over all particles in an appropriate surrounding Si of particle i. The second
term is the friction which usually is only velocity dependent. Of course, other terms
might also be included here, but for our purposes the above equation is generic
enough to explain most details of implementing a molecular dynamics simulation.
The restriction to two dimensions is easily generalizable to three dimensions. In
fact, most of the following code is already independent of the concrete dimension.

For the interaction we use the Lennard-Jones potential [?]

fint(xi,x j) =−
r
|r|

dV
dr

with r = xi− x j (15)

with

V (r) = 4ε

((
σ

r

)12
−
(

σ

r

)6
)

. (16)

It is used to describe the interaction of chemically unbounded atoms and molecules.
Here ε is the strength of the interaction and σ denotes the interaction radius. The
interaction decreases very fast with increasing distance of the particles f ∼ r−7. So,
to speed up the simulations one usually restricts the interactions for particle i to
particles withing its surrounding Si = { j : |xi− x j| < 4σ}. Of course, this means
that mathematically the Lennard-Jones is not continuous anymore, but this is only
of minor importance for our sample application. In practice several possibilities to
overcome this discontinuity exist.

How can one implement such rather complicated systems of ODEs in a high-
performance way on GPUs? The obvious idea would be to discard the locality of
the potential and calculate all pairwise interaction for all particles. Unfortunately,
this brute-force solution is far from being optimal. The computational complexity is
O(n2) since all possible pairwise interactions are calculated. As explained above the
interaction decreases very fast with increasing particle distance, so one should only
take neighboring particles into account. In the following we present an algorithm
for this problem and its GPU-implementation.

The basic idea is to assign particles to a regular grid of relatively large cells and
calculate the interaction of particle i only with the particles located in neighboring

28 Karsten Ahnert, Denis Demidov and Mario Mulansky

Listing 18: mdc thrust v2.cu

71 template< typename LocalForce , typename Interaction >
72 struct md_system_bs {

204 void operator()(point_vector const &x, point_vector const &v,
205 point_vector &a, double t) const
206 {
207 typedef thrust::counting_iterator< size_t > ci;
209 // Reset the ordering.
210 thrust::copy(ci(0), ci(prm.n), part_ord.begin());
212 // Assign each particle to a cell.
213 thrust::for_each(
214 thrust::make_zip_iterator(thrust::make_tuple(
215 x.begin(), cell_coo.begin(), cell_idx.begin()
216)) ,
217 thrust::make_zip_iterator(thrust::make_tuple(
218 x.end(), cell_coo.end(), cell_idx.end()
219)) ,
220 fill_index_n_hash(prm));
222 // Sort particle numbers in part_ord by cell numbers.
223 thrust::sort_by_key(cell_idx.begin(), cell_idx.end(),
224 part_ord.begin());
226 // Find range of each cell in cell_idx array.
227 thrust::lower_bound(cell_idx.begin(), cell_idx.end(),
228 ci(0), ci(prm.n_cells), cells_begin.begin());
230 thrust::upper_bound(cell_idx.begin(), cell_idx.end(),
231 ci(0), ci(prm.n_cells), cells_end.begin());
233 // Handle boundary conditions
234 thrust::transform(x.begin(), x.end(), x_bc.begin(),
235 bc_functor(prm));
237 // Calculate the local and interacttion forces.
238 thrust::for_each(
239 thrust::make_zip_iterator(thrust::make_tuple(
240 x_bc.begin(), v.begin(), cell_coo.begin(),
241 ci(0), a.begin()
242)),
243 thrust::make_zip_iterator(thrust::make_tuple(
244 x_bc.end(), v.end(), cell_coo.end(),
245 ci(prm.n), a.end()
246)),
247 interaction_functor(cells_begin, cells_end, part_ord,
248 x, v, prm)
249);
250 }
288 };

cells, see Listing 18. This method is also known as cell list algorithm. Another
popular ansatz for the interaction computation, — the neighbor list — takes only the
neighbors of particle i into account [?]. In the following we will only concentrate on
the first method.

Solving Ordinary Differential Equations on GPUs 29

Listing 19: mdc thrust v2.cu

71 template< typename LocalForce , typename Interaction >
72 struct md_system_bs {

139 struct interaction_functor {
169 template< typename Tuple >
170 __host__ __device__ void operator()(Tuple const &t) const {
171 point_type X = thrust::get<0>(t);
172 point_type V = thrust::get<1>(t);
173 index_type index = thrust::get<2>(t);
174 size_t cell_idx = thrust::get<3>(t);
176 point_type A = local_force(X, V);
178 for(int i = -1; i <= 1; ++i) {
179 for(int j = -1; j <= 1; ++j) {
180 index_type cell_index = index + index_type(i, j);
181 size_t cell_hash = get_cell_idx(cell_index, nx, ny);
182 for(size_t ii = cells_begin[cell_hash],
183 ee = cells_end[cell_hash]; ii < ee; ++ii)
184 {
185 size_t jj = order[ii];
187 if(jj == cell_idx) continue;
188 point_type Y = x[jj];
190 if(cell_index[0] >= nx) Y[0] += xmax;
191 if(cell_index[0] < 0) Y[0] -= xmax;
192 if(cell_index[1] >= ny) Y[1] += ymax;
193 if(cell_index[1] < 0) Y[1] -= ymax;
195 A += interaction(X, Y);
196 }
197 }
198 }
200 thrust::get<4>(t) = A;
201 }
202 };
288 };

In the two-dimensional case each cell can be identified either by a two dimen-
sional index (jx, jy) or by a one dimensional index j = ix + nx jy where nx is the
number of cells in x-direction. The ordering of the particles is done in two steps.
First, the cell index j of each particle is calculated and stored in a vector cell_idx,
lines 213–220. Secondly, the particles are sorted in ascending order according to the
cell index. Of course, the vector of particles is not ordered itself. Instead, a vector
with indices is created and sorted according to the cell indices. This is done by the
sort_by_key algorithm from Thrust which sorts the first container and reorders the
second container according to the order of the first one. The part_ord vector is then
used as the index to refer to the original element in the particles vector. This kind of
sort algorithm is also know as bucket sort [?].

The cell_idx vector now consists of a sorted array of the cell indices for each
particles. Next we find the range (begin and end) for each cell in cell_idx which

30 Karsten Ahnert, Denis Demidov and Mario Mulansky

102 103 104 105 106

N

10−1

100

101

102

103

104

105

106

107

108

T
im

e
p

er
10

00
it

er
at

io
n

s

CPU v1

CPU v2

Thrust v1

Thrust v2

VexCL v1

VexCL v2

Fig. 3: Performance results for the molecular dynamics example.

corresponds to particles located in each of the cells (Lines 227–231). The range
limits are stored in the cells_begin and cells_end arrays.

The final step is to compute the local forces and interactions for all particles,
see Lines 238–249. Here we loop over all particles and velocities. The result is
the acceleration which is stored in the vector a. The vector cell_coo contains the
index of the cell in which the current particle is located. The interaction functor
is shown in Listing 19. First, the local force is calculated in Line 176. Then two
loops iterate over all neighboring cells of the current particle. Inside that loop the
interaction between all particles in this cell and the particle is calculated. Lines 190–
193 perform checks and corrections if particles are out of boundaries or are located
on the opposite side of the considered domain.

At this point we only need to define the concrete solver type. A classical solver
for molecular dynamic simulation is the Velocity-Verlet algorithm [?], which is used
for second order ODEs and makes single RHS evaluation during one step. Here we
use the implementation of the method from Boost.odeint.

The VexCL implementation follows the Thrust variant closely, so we omit the
code for the sake of conciseness. VexCL provides sort_by_key primitive, and we
had to implement lower_bound and upper_bound algorithms in form of custom
VexCL functions. We also had to use custom kernel in order to compute the in-
teraction force. The kernel source is very similar to the Thrust interaction functor
(Listing 19). See md_vexcl_v2.cpp file for the complete VexCL solution.

Figure 3 shows performance results for the different versions of the molecular
dynamics example. Versions denoted by “v1” implement the straight-forward algo-
rithm with O(n2) complexity. “v2” versions employ the bucket sort optimization.

Solving Ordinary Differential Equations on GPUs 31

Both of the CPU versions use separate code which was again omitted from the
text. The versions that use bucket sort optimization are expectedly faster than the
“v1” algorithm. The Thrust and the VexCL versions show similar performance for
large enough problems on the same hardware (with VexCL by 10–30% faster than
Thrust). For both versions the GPU implementations are orders of magnitude faster
than the CPU implementation (factor 75 for “v1” and 25 for “v2”). But the biggest
performance boost comes from the algorithmic complexity reduction: e.g. the opti-
mized VexCL version runs 300 times faster than the straight-forward one.

7 Summary and Conclusions

We have presented a high-level approach to compute numerical solutions of ODEs
by developing a generic implementation of common ODE solvers. The proposed
framework is very flexible and is able to adapt several CPU and GPU backends. The
Thrust and the VexCL backends considered here are very different with respect to
their interface design, but nevertheless are easily incorporated with our approach to
generic algorithms. The proposed ideas and techniques are already implemented in
the Boost.odeint library, which offers a vastly larger functionality, including more
steppers and more backends.

Regarding the backend choice, it seems that the use of VexCL results in generally
shorter and cleaner code for the kind of problems we considered here. Admittedly,
for the more advanced molecular dynamics example we had to implement a custom
OpenCL kernel, although the implementation was very similar to the correspond-
ing Thrust functor. Performance-wise, VexCL showed slightly better results for the
larger problems, but due to OpenCL initialization cost was slower for the smaller
problem sizes. The main advantage of VexCL (and of OpenCL libraries in general)
seems to be the larger set of supported hardware. It should be noted that Boost.odeint
supports many other backends, which allows the user to choose the one best suited
for the problem at hand, or the one they feel most comfortable with. This freedom
is the great advantage of the modularized, generic design that we presented here
for ODE solvers. It is clear that this technique can be applied to other numerical
algorithms as well.

8 Acknowledgments

This work has been partially supported by the Russian Foundation for Basic Re-
search (RFBR) grants No 12-07-0007 and 12-01-00333a. M. M. thankfully ac-
knowledges financial support through the visitors program of the MPIPKS, Dresden
(Germany).

	Solving Ordinary Differential Equations on GPUs
	Karsten Ahnert, Denis Demidov and Mario Mulansky
	Introduction
	Numerical Schemes
	Ordinary Differential Equations
	Runge-Kutta Schemes

	Generic Runge-Kutta Implementation
	Computational Requirements
	Modularized Design
	Lorenz Attractor Example

	GPU Backends
	Thrust Backend
	VexCL Backend

	The Boost.odeint Library
	Example Problems
	Lorenz Attractor Ensemble
	Chain of Coupled Phase Oscillators
	Molecular dynamics

	Summary and Conclusions
	Acknowledgments

