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During my HPC-Europa2 project (Project Number 666), I performed numerical simula-
tions for two different two-dimensional models: the 2D DANSE model and a 2D lattice of
Hamiltonian oscillators. For both cases I was interested in the spreading behavior of ini-
tially localized modes. Results in one dimension have been obtained previously for both the
DANSE model [1, 2, 3] and the Hamiltonian lattice [4]. Here, I report some of the major
results obtained for the 2D version of the DANSE model. Due to limitations on the length
of this report I am not able not show the results of the second model. However, they are
currently being prepared for publication and should be available in the near future.
We are interested in the spreading of initially localized wave packets in a two dimensional

disordered nonlinear Schrödinger lattice (2D DANSE model). A rather superficial investiga-
tion of this model has been performed previously [5] and our aim was to obtain more reliable
results by using the CINECA sp6 supercomputer to reach longer time scales and perform
better averaging. The equations of motions for the 2D DANSE are:

i
d

dt
ψn,k = Vn,kψn,k + ψn−1,k + ψn+1,k + ψn,k−1 + ψn,k+1 + β|ψn,k|

2ψn,k. (1)

ψn,k is the complex wave function amplitude at lattice site (n, k), Vn,k is the random potential
at this site chosen iid. from [−W/2,W/2]. The lattice was chosen quadratic with N ×N sites
andN = 256. β represents the nonlinearity strength and was set to β = 1.0 in our simulations.
Note that norm and energy are conserved quantities in this system.
For the numerical simulations, we started with single site excitions at the lattice center with

the potential value VN/2,N/2 at this site chosen such that the energy equals zero while the norm
of the wave function was always 1. The we used a 6th order accurate composition scheme based
on a two-dimensional version of a multi-symplectic method [6] to numerically perform the time
evolution of this localized initial state. The advantage of this multi-symplectic method is that
it is explicit in space and implicit only in time which means that it does not require to solve
a linear set of equations for each time step but only to find the root of a quadratic equation
for each lattice site. This results in a better performance than classical symplectic schemes
like Crank-Nicolson. The time step was fixed to ∆t = 0.2 and we integrated up to t = 107.
As result of the multi-symplectic method norm and energy were conseved with accuracy 10−3

during the whole integration.
These time evolutions were repeated for up to M = 20 disorder realization and the results

presented below are averages over these disorder realizations. To quantify spreading we used
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Figure 1: Left: Participation Number P and second moment ∆n2 vs. time for W = 10 av-
eraged over 20 disorder realization. Right: Structural entropy Sstr = S − S2 vs.
time.

the well known quantity participation number P defined via P−1 =
∑

n,k |ψn,k|
4. P is un-

derstood to measures the number of excited sites in the system. Additionally, we used the
second moment in x- and y-direction to obtain estimates of the extent of the excitation:

∆n2 =
√

∆x2∆y2 with

{

∆x2 =
∑

n,k n
2|ψn,k|

2 − x̄2 and x̄ =
∑

n,k n|ψn,k|
2

∆y2 =
∑

n,k k
2|ψn,k|

2 − ȳ2 and ȳ =
∑

n,k k|ψn,k|
2.

(2)

The results for both measures are shown in Fig. 1 and Fig. 2 for two different values of disorder
strengthW = 10 andW = 15. In both cases we find P ∼ t0.3 while ∆n2 ∼ t0.2 which indicates
that the structural properties of the states change during the spreading. This is fortified by
the results on the structural entropy Sstr := S −S2 [7] where S is the usual Shannon entropy
and S2 is the Rény entropy with index 2: S2 = − ln

∑

i,j |ψi,j |
4 = lnP . If the spreading

would be structurally self-similar we would observe that Sstr is constant. The decreasing
of Sstr for t > 103 means the the wave function gets more and more uniform during the
spreading progress. This change of the peak structure indicates that the asymptotic regime
of self-similar spreading has not yet been reached in our simulations. However, we clearly
observed a subdiffusive spreading as assumed from various results in one dimension and a
previous study on this 2D setup [5].
Additionally, we studied this model with a different nonlinear term: β|ψn,k|

2/3ψn,k. For
this setup a prediction exists saying that the spreading should be more efficient than the
subdiffusive [8] behavior. Our results, however, showed usual subdiffusion and we could not
identify any signature of enhanced spreading. Further analysis of these results are to be done.
The work has been performed under the HPC-EUROPA2 project (project number: 228398)

with the support of the European Commission - Capacities Area - Research Infrastructures.
M.M. thanks S. Lepri, A. Politi and the CNR in Florence, Italy for hospitality and financial
support.
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Figure 2: Same plot as in Fig. 1 but for disorder strength W = 15.
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